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Abstract

The three-dimensional problem of the theory of elasticity of the harmonic oscillations of cylindrical bodies (a layer with several
tunnel cavities on a cylinder of finite length) is considered for uniform mixed boundary conditions on its bases. Using the �-solutions
constructed, the boundary-value problems are reduced to a system of well-known one-dimensional singular integral equations. The
solution of the problem of the pulse excitation of a layer on the surface of a cavity is “assembled” from a packet of corresponding
harmonic oscillations using an integral Fourier transformation with respect to time. The results of calculations of the dynamic stress
concentration in a layer (a plate) weakened by one and two openings of different configuration are given, as well as the amplitude-
frequency characteristics for a cylinder of finite length with a transverse cross section in the form of a square with rounded corners,
and data of calculations for a trapeziform pulse, acting on the surface of a circular cavity, are presented.
© 2006 Elsevier Ltd. All rights reserved.

Methods of homogeneous solutions1 or superposition2,3 and some others4,5 have been effectively used to investigate
the harmonic oscillations of a finite circular cylinder or a layer with a cavity. If there is a plane tunnel crack or inclusion-
type nonuniformity in the layer, the solution can, in principle, be obtained using the method of homogeneous solutions
in combination with an integral Fourier transformation.6 A corresponding theory has been developed for multiple plane
cracks, parallel to the bases of the layer.7,8 In the case of configurations differing from circular, it is more convenient
to use the method of integral equations. In this case the problem arises of the correspondence between the boundary
conditions of the theory of elasticity and the boundary conditions for the set of metaharmonic functions, which occur
in the corresponding homogeneous solutions (see Ref. 9).

A one-to-one correspondence between the densities in the integral representations of metaharmonic functions and
the physical quantities – the jumps in the kinematic quantities on the surface of a cylindrical nonuniformity, was
obtained in Ref. 10 by another method. However, this approach leads to the need to regularize divergent integrals and,
as a consequence, leads to integro-differential equations of fairly complex structure.10,11

Below we develop a new approach to investigating the harmonic oscillations of multiply connected cylindrical
bodies of fairly arbitrary configurations.
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1. Formulation of the problem

In a rectilinear Cartesian system of coordinates Ox1x2x3 we will consider a uniform elastic isotropic layer −∞ < x1,
x2 < ∞, |x3| ≤ h, weakened by tunnel cavities with a common boundary of the transverse cross-section � = ∪��(∩�� = ∅,
� = 1, 2, . . ., N). We will assume that �� are simple closed contours without points of self-intersection, with Hölder-
continuous curvatures. We will specify the stress vector (X1n, X2n, X3n)(x, t), x = (x1, x2, x3) ∈ S on the surfaces of the
cavities S = ∪S�. We will take the following homogeneous boundary conditions of the mixed type on the bases of the
layer

(1.1)

The problem consists of the determining the wave fields of the displacement vector u = (u1, u2, u3) and the stress tensor
with components �ij(i, j = 1, 2, 3) for harmonic or pulse excitation of the layer.

To determine the wave field of the displacements we will use the Lamé system of equations

(1.2)

where � is the Laplace operator in R3, ϑ is the volume expansion, Xj is the strength of the bulk forces, � and � are the
shear modulus and Poisson’s ratio, and � is the density of the material. Here and henceforth summation is carried out
over repeated subscripts i, k from 1 to 3.

We will introduce the following notation

where c1 and c2 are the propagation velocities of a longitudinal wave and a transverse (shear) wave in the elastic
medium, and �1 and �2 are the corresponding wave numbers.

We will first consider harmonic excitation of the layer; we will put

(1.3)

where Uj = Uj(x), � = �(x), Yj = Yj(x) (x = (x1, x2, x3)) are the amplitudes of the corresponding quantities.
Eliminating the time t in Eqs. (1.2) using the representations (1.3), we arrive at a system of differential equations in

the amplitudes

(1.4)

It is necessary to add to system (1.4) the following boundary conditions on the surfaces of the cavities

(1.5)

where Sij and Yjn are the amplitude values of the quantities �ij and Xjn respectively.
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Bearing in mind the symmetrical state relative to the middle plane of the layer, we can represent the amplitudes of
the displacements and the strengths of the bulk forces in the form of Fourier series

(1.6)

In this case boundary conditions (1.1) on the bases of the layer will be satisfied.
Eliminating the thickness coordiate x3 in Eqs. (1.4) using representations (1.6), we arrive at a system of equations

in the Fourier coefficients Ujm

(1.7)

To eliminate the thickness coordinate from Eqs. (1.5), we will use the following representations for the amplitudes of
the components of the stress tensor and the surface-load vector, consistent with representations (1.6)

(1.8)

Then the boundary conditions (1.5) decompose into a set of equalities of the form

(1.9)

2. The �-solutions for a layer

Suppose now that forces with strengths {P1, P2, P3}(x3) per unit length are distributed along the cord x1 = 0, x2 = 0,
|x3| ≤ h. Then, the Fourier coefficients of the strengths of the bulk forces, which occur on the right-hand sides of Eqs.
(1.7), take the form

(2.1)

where �(x) is the two-dimensional delta function.
We mean by the �-solutions for the layer, corresponding to mixed boundary conditions (1.1), the components of

the matrix of the fundamental solutions of system (1.7) with right-hand sides defined by Eqs. (2.1).
From Eqs. (1.7) we derive by the usual method

(2.2)

We will consider in more detail the case when P1 �= 0 and P2 = P3 = 0.
From Eq. (2.2) for the case considered we obtain the inhomogeneous Helmholtz equation

(2.3)
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Suppose E is the fundamental solution of the Helmholtz operator.12 Taking into account the fact that �(x) is finite and
the convolution E × ∂1f = f × ∂1E exists, we obtain from Eq. (2.3)

(2.4)

where

and H (1)
p (x) is the Hankel function of the first kind of order p.

Formula (2.4) enables us to separate the equations in system (1.7) and to represent it in the form

(2.5)

Integration of system (2.5) in the space of generalized functions D′(R2) gives

In a similar way we can consider the case when P2 �= 0, P1 = P3 = 0 and P3 �= 0, P1 = P2 = 0. We will write the final
results for the displacement vector

(2.6)

The quantities g
(j)
nm are the components of the matrix of the �-solutions for each fixed value of m

(2.7)

The actual values of the displacements for the general case can be found from the formulae

(2.8)

Expressions (2.6) and (2.8) provide a representation of the waveguide properties of the layer. It can be seen that for any
excitation frequency, there is always a number m for which the characteristic number �1m or both characteristic numbers
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become pure imaginary, which leads to non-uniform waves, decaying exponentially with r. When �(2m − 1) < 2�1h
the first m terms in series (1.6) are the superposition of waves propagating from the source. Terms of the series which
satisfy the inequality �(2m − 1) > 2�2h, decay exponentially as r increases, and also as the number m increases. Hence
it follows that the thicker the waveguide the wider the frequency spectrum transmitted.

It can be seen from this that the residues of series (1.6) approach zero, since the common term of any of the series
decreases exponentially as the number m increases. It can be shown that the series converge absolutely when r �= 0.

3. Integral representations of the solutions of boundary-value problem (1.7), (1.9)

Suppose f ∈ C2(Ḡ), where G = R2� is a physical field with a line of discontinuity �. We will write formulae for the
generalized derivative12

where {·} is the corresponding classical derivative, [·] is the jump in the function indicated on the contour �, nj is the
projection of the unit vector of the normal to the contour � onto the xj axis, and [·]�� and ∂

∂n
([·]δΓ ) are simple and

double layers respectively.
Introducing these relations into system (1.7), taking into account expressions (2.1), we can represent it in the form

(3.1)

Using the matrix of the �-solutions (2.7), the solution of system (3.1) can be represented in the form of a convolution

In expanded form, we hence obtain integral representations of the wave field of the displacements (everywhere hence-
forth, unless otherwise stated, the integration is carried out over the contour �)

(3.2)

where dSy is an element of the arc of the contour � and the summation is carried out over k = 1, 2, 3.
In the case when the contour � is a set of closed arcs (mathematical sections) ��(� = 1, 2, . . ., N) and the stress vector

can be extended continuously over the whole of ��, it is sufficient to retain the first term on the right-hand side of Eq.
(3.2), to find the solution in the form of generalized potentials of the double layer. To solve the problem considered
here, we will retain only the second term and we will seek the solution in the form of generalized potentials of the
simple layer, which, in expanded form, can be written as

(3.3)

The functions
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remain to be determined, 	 = 
1 + i
2 ∈ � = ∪��, dS is an element of the arc of the contour �, 	 − z = rei�, and the
function H = H(r) is defined in Section 2.

4. The resolving system of integral equations

It is convenient to represent boundary conditions (1.9) on the contour � in complex form

(4.1)

where � is the angle between the normal to the contour � and the Ox1 axis, and N(m) and T(m) are the Fourier coefficients
of the amplitudes of the normal and shear stresses on �.

Using Hooke’s law in amplitudes, we obtain representations of the combinations introduced in (4.1) in terms of the
components of the displacement vector

(4.2)

We will introduce the functions yjm by the equalities

(4.3)

Substituting the limit values of the combinations (4.2) into the boundary Eqs. (4.1) using representations (3.3) and
bearing in mind formulae (4.3), we obtain a system of singular integral equations of the boundary-value problems
(1.7), (1.9)

(4.4)

Here



280 D.V. Kushnir, L.A. Fil’shtinskii / Journal of Applied Mathematics and Mechanics 70 (2006) 274–283

The kernels K22, K21, K23, K32 are obtained from K11, K21, K13, K31 by replacing �0, �0, � by −�0, −�0, −�
respectively.

The resultant index of system (4.4) is equal to zero; consequently, it is uniquely solvable for any frequency  not
belonging to the spectrum.

Remark. System (4.4) can be used both to investigate wave fields in a layer (plate) with cavities, retaining the lower
sign in terms outside the integral, and when considering the oscillations of cylinders of finite length (the upper sign).

An expression for the normal stress ��� on the boundary surfaces �� is also necessary. Using relations (3.3) and
(4.2), we can represent it in the form

(4.5)

We will now consider the pulse excitation of a layer with a tunnel cavity. Introducing the Fourier integral transformation
with respect to time

we reduce boundary-value problem (1.7), (1.9) with respect to the Fourier transform of the corresponding densities
to a system of integral Eqs. (4.4), where the right-hand sides now represent the spectral functions of the load acting
on the cavity surface. The solution of the pulse problem is the superposition of “elementary” solutions over the whole
frequency spectrum.

5. Some results

Suppose the layer is weakened by a tunnel cavity with a contour of the cross section in the form of an ellipse
(	 = R1cos� + iR2sing�) or a square with rounded corners (	 = R(ei� + 0.14036e−3i�)). A normal pressure, varying
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Fig. 1.

harmonically with time, having an amplitude

(5.1)

acts on the cavity surface.
The calculations were carried out in the following sequence. We first found the approximate numerical solution

of the system of integral Eqs. (4.4) using the method of mechanical quadratures,13 and then, from relations (4.5), we
established the amplitude values of the mechanical stresses ���.

The change in the relative value of � = |S��/N0| at the point A (x3 = 0) as a function of the relative wave number
�1R for a cavity of circular cross section (R1 = R2 = R = 1), elliptical cross section (R1 = 3/2, R2 = 1, R = (R1 + R2)/2)
and “square” cross section (R = 1) is presented in Fig. 1. Here h = 1 and � = 0.28. Curves 1, 2 and 3 are con-
structed for a circle, ellipse and a square respectively. In the right upper corner of Fig. 1 we show the distribution
of the quantity � along the circular, elliptic and square contours in the middle plane of the layer for the same
parameters and the same correspondence as above, for �1R = 0.5 (the distribution is symmetrical about the axis
� = �/2).

We will now consider a layer weakened by two tunnel cavities. Curve 1 in Fig. 2 illustrates the distribution of the
quantity � along the contour of the orifice (in the middle plane of the layer) for the case of two circular cavities of the
same radius R = 1 with a bridge between them d = 0.1. Curve 2 corresponds to the distribution of the quantity � along
the contour of an elliptical orifice (R1 = 3/2 and R2 = 1), interacting with a circular orifice (R = 1) when d = 0.1. In both
cases a normal pressure of amplitude (5.1) acts on the surface of the cavity. The remaining parameters are the same as
above.

In the right upper part of Fig. 2 we show the amplitude-frequency characteristic of the quantity � at the point A for
a cylinder of finite length with a cross section in the form of a square with rounded corners for the same values of the
parameters as above.

Suppose a trapeziform pressure pulse acts on the surface of a circular cavity (T is the pulse length)



282 D.V. Kushnir, L.A. Fil’shtinskii / Journal of Applied Mathematics and Mechanics 70 (2006) 274–283

Fig. 2.

Fig. 3.

The results of calculations of the evolution of the relative quantity � = ���/N0 with time for different values of n are
shown in Fig. 3 for

Hence, we have developed a fairly effective method of solving three-dimensional boundary-value problems of the
harmonic oscillations of a multiply connected cylindrical body with mixed boundary conditions on its bases.

References

1. Vorovich II. Some mathematical problems of the theory of plates and shells. In: Proceedings of the Second All-Union Congress on Theoretical
and Applied Mechanics. The Mechanics of Rigid Bodies (Moscow 1996). Moscow: Nauka; 1968. pp. 116–36.

2. Grinchenko VT. The Equilibrium and Steady Oscillations of Elastic Bodies of Finite Dimensions. Kiev: Naukova Dumka; 1978.
3. Gomilko AM, Gorodetskaya NS, Grinchenko VT, UKRAINSKII LYe. The axisymmetric mixed problem of the stationary dynamic theory of

elasticity for a layer with a cylindrical orifice. Prikl Mekhanika 1998;34(1):39–46.
4. Wang H, Williams K. Vibrational modes of thick cylinders of finite length. J Sound and Vibrat 1996;191(5):955–71.
5. Dzyubak LP, Yanyutin YeG. The unsteady deformation of a hollow cylinder of finite length. Izv Ross Akad Nauk MTT 1997;5:123–31.
6. Shaldyrvan VA, Vasil’yev TA. A tunnel crack in a transtropic layer. In: Modern Problems of Continuum Mechanics. Proceedings of the 8th

International Conference, Rostov-on-Don, Vol. 1. Izd.. Rostov-on-Don: Novaya Kniga; 2003. p. 211–5.
7. Babeshko VA. Media with inhomogeneities (the case of sets of inclusions and cracks). Izv Ross Akad Nauk MTT 2000;3:5–9.



D.V. Kushnir, L.A. Fil’shtinskii / Journal of Applied Mathematics and Mechanics 70 (2006) 274–283 283

8. Babeshko VA, Pavlova AV, Ratner SV. The solution of the problem of the vibration of an elastic body containing a system of internal cavities.
Dokl Ross Akad Nauk 2002;382(5):625–8.

9. Vorovich II, Malkina OS. The stress state of a thick plate. Prikl Mat Mekh 1967;31(2):230–41.
10. Fil’shtinskii LA. The extension of a layer weakened by tunnel cuts. Prikl Mat Mekh 1995;59(5):827–35.
11. Fil’shtinskii LA, Kovalev YuD, Ventsel ES. Solution of the elastic boundary value problems for a layer with tunnel stress raisers. Intern J Solids

and Struct 2002;39(26):6385–402.
12. Vladimirov VS. Equations of Mathematical Physics. New York: M. Dekker; 1971.
13. Belotserkovskii SM, Lifanov IK. Numerical Methods of Singular Integral Equations and their Application in Aerodynamics, the Theory of

Elasticity and Electrodynamics. Moscow: Nauka; 1985.

Translated by R.C.G.


	Harmonic and pulse excitations of multiply connected cylindrical bodies
	Formulation of the problem
	The Phi-solutions for a layer
	Integral representations of the solutions of boundary-value problem (1.7), (1.9)
	The resolving system of integral equations
	Some results
	References


